刀具作为直接或间接安装在机床上,用以完成工件加工任务的工具,我们必须考虑两个适用性和一个协调性。即适用于所选用的机床,适用于所选用的工件,以及与加工任务相匹配。
首先是与机床匹配。
各位可能首先想到的,是外形和尺寸的匹配。
的确,外形和尺寸的匹配是刀具在机床上能够正确安装的基础。没有这个基础,刀具无法被正确地安装在机床上,因此也就谈不上完成什么加工任务。
但是,仅有这一点是不够的。
刀具在被安装在机床上之后,是需要完成一定的加工任务的。在完成这个加工任务的过程中,需要保证加工精度、需要承受和传递切削力和切削扭距、需要完成切削热的承受、传递和导出,需要考虑有可能的切削废弃物(切屑和料头)甚至是工件的传输,以及现代的刀具参数数字化传递等等。
这些任务有些虽然不是常见,确也是刀具可能承担的任务。如果我们能够在选择刀具,考虑刀具与机床的匹配性方面一并考虑,会增加我们解决加工问题的思路。
保证加工精度、传递切削力和力矩、提供切削液的通道是我们目前在保证外形和尺寸的匹配后,经常会遇到的问题。例如在加工中心上,我们经常使用圆柱形(通常称为直柄)作为夹持方式。那么就圆柱形的刀柄,除典型的完整的圆柱形外,还有一些在圆柱形上增加一些其它要素的变化,如削平型直柄(铣刀按直径分为单削平面和双削平面两种,钻削常见全削平面,都被称为侧压式),带2°倾斜的斜削平式,带扁尾的直柄(常用于钻头),带方身的直柄(常用于丝锥和铰刀)等多种方式。
就这类刀柄与机床的联结方式来说,只用圆柱部分定位、夹紧的也不在少数。各种压力角的弹簧套系统,强力夹头系统,液压锁紧系统、热膨胀装夹系统、力变形锁紧系统等都是用于锁紧圆柱刀柄的。但各种夹持方式各有优点和缺点。就拿最常见的弹簧套系统来说,大的压力角(此处将压力角定义为锥面锁紧的正压力与圆柱轴线的夹角),即大的锥角代表锁紧行程较短,有利于快速地锁紧与松开,但在相同的锁紧力矩下分解到圆柱面上的正压力较小,由此产生的摩擦力距小,能够抵抗的切削力距也相应比较小,刀具易在刀柄中产生打滑的现象,影响加工过程的平稳性和加工表面质量;同时此类夹头可夹持的刀柄直径变化范围较大,有利于减少弹簧套的库存,优化管理。而小的压力角就相反。小的压力角的弹簧套可夹持的刀柄直径范围较小,夹紧时的锁紧行程较长,不利于快速夹紧与松开,但其夹持精度稍高,夹紧力大,能承受更大的切削载荷。
液压锁紧系统是一种新兴的夹持系统,它利用高粘度液压油的不可压缩性使刀具夹持腔的内壁发生弹性变形,从而锁紧刀具。液压锁紧系统的精度高,锁紧与松开不需要专门的器械从而显得比较方便,锁紧力矩通常也优于弹簧套系统,但其内壁只能在弹性变形的范围内工作。一旦超出此范围,内壁就会出现不可逆转的塑性变形,就会造成该刀柄装夹腔的永久性失效。因此,削平型刀柄,尤其是钻削刀具常用的全削平型刀柄是不能在液压锁紧系统中使用的。空腔施压、刀柄未插到容腔底部等,也是会导致该系统损坏失效的常见原因。
热膨胀装夹系统则通常需要专用设备,这样的设备以能控制加热、冷却按多种预定模式进行的为佳。非专业的加热设备(甚至火焰加热)也许可以使用,但常常由于温度和加热曲线不能得到良好的控制而对刀柄的其它部分受到影响,甚至改变其金相组织,从而使系统很快失效。另外就是热膨胀装夹系统的刀具长度难以调整,需要专门的辅助工具,这给在需要多刀具同步工作的场合增添了一些麻烦。
在另一方面,刀具夹持方式也可能决定着生产效率的可能值。
圆柱刀柄和液压、热膨胀都是可以适应较高转速的平衡设计,而削平型的装夹却是一种典型的非平衡设计,刀具厂商都将其列入不推荐用于高速切削的行列。
就刀柄本身而言,在被铣(或磨)去一部分材料形成压力面时,刀柄部分的重心即与刀具的回转中心不重合了。在刀具夹紧的过程中,削平柄被锁紧螺钉推向已经偏离中心的那一侧,刀具的重心将进一步偏离刀具在机床上的回转中心,这些都增加了刀具的不平衡。加上一些使用者在原始的锁紧螺钉损坏或遗失后随意配上一个螺钉,长度等往往没有在意,这样的行为也给刀具的平衡性能增加了不确定性。因此,削平型(包括斜削平)都不建议在高速下使用。
但削平型是带有强制驱动性质的刀柄,它较纯圆柱完全依靠摩擦力传动在高扭距下更为可靠。因此,在粗加工(粗加工一般扭距大,但转速较低)时还是比较合适的。
其次,是刀具与被加工工件的适用性。
这其中包含的内容比较多。
1.适用于加工工件的材料和力学条件
刀具上最重要的基本点是刀尖。所谓刀尖,从定义上是主、副切削刃的交点。而主切削刃是前刀面与主后刀面的交线,副切削刃是前刀面与副后刀面的交线;因此刀尖实际上也是前刀面、主后刀面、副后刀面三个面的交点。加上工作状态,它与工件接触的点也是在工件上已加工表面和切削平面(又称过渡表面)的交线上。因此,它实际上是五个面和两个刃的汇集点。
但是,本文说将的刀尖,要比上述定义的范围大一些,它是指上述概念“刀尖”及其刀具上邻近该“刀尖”的周边地区。
构成这个刀尖切削性能的,有三个主要因素:基体材料、表面状态、几何形状。这三者以及它们的交互作用,基本上决定了这个刀尖具有什么样的切削性能。
基体材料:
现在许多刀具都具备了涂层,但基体材料仍然对刀尖的性能发挥着非常重要的作用。涂层通常很薄,大部分的涂层的厚度在3~25µm(约人类头发的健?倍),其能够直接承受的切削力和切削热还是很有限的,大部分的切削力、切削热要依靠刀具的基体材料来承受。目前主要用于刀具基体材料的,有高速钢、钨基硬质合金(即平时就称为硬质合金的)、钛基硬质合金(平时许多人称之为金属陶瓷)、陶瓷(氧化物陶瓷、氮化物陶瓷、混合陶瓷等)、立方氮化硼(CBN)、人造金刚石(PCD,德文缩写为PKD)几大类。目前以硬质合金最为常用。bbshuang霜排名厂房招租有效什么化妆水好隔离霜眼线笔哪种好护手全身防晒什么牌子的好
钨基硬质合金分为钨钴类硬质合金和钨钴钛类硬质合金两个大类(参见漫笔硬质合金的发明一文)。钴在硬质合金中所起的作用是粘结相,因此,基体材料的钴含量越高,在同等条件下就抗冲击能力越强。而碳化钨、碳化钛等是硬质相,硬质相越多,基体材料的硬度就越高。因此,通常精加工时由于加工余量均匀,一般冲击较小,可选用含钴较少的硬质合金,刀具的耐磨性也比较好;而粗加工时则经常会面对余量不均匀的情况,宜采用含钴量较高的硬质合金,这样对防止粗加工时刀具的突然崩刃,发挥刀具应有的耐用度还是很有意义的。
基体材料近年来的一个技术进步是富钴层技术。采用富钴层技术的硬质合金是通过一定的工艺,使硬质合金中的钴相对向表层集中,这样硬质合金的中心部分就有更高的硬度,而表面因具有更多的钴而韧性更强。切削中切屑的冲击主要是发生在表层,采用富钴层的刀具更能够抵御这样的冲击。
基体的另一个主要变化在于细颗粒化。在相同或相近的化学成分下,颗粒细化能明显提高硬质合金的强度。我个人认为,从某种方面看,硬质合金的强度分析与砂轮的强度分析颇有相似之处。硬质合金刀具的强度实际上也是有两方面构成的,一是硬质相本身的强度,即硬质相抵御外力破坏的能力,另一方面是粘结相保护硬质相不致脱落、位移的能力。细化的硬质合金首先是由于硬质相颗粒的细小化,致使其破坏的临界外力增加了。好比我们要扳断一支粉笔很容易,而要扳断一个粉笔头却要困难得多。
a)细颗粒硬质合金KC635Mn 刀具寿命: 25min
b)超细颗粒硬质合金KC637M 刀具寿命: 70min
刀具涂层:
有资料说, 所有切削刀具中70-80%都是涂层刀具。涂层改善了所有切削刀具基体材料的切削性能:高速钢(HSS)、硬质合金、金属陶瓷、陶瓷、超硬材料等等。 刀具为什么需要进行涂层?它的主要作用包括以下几个方面:
1) 延长刀具寿命
2) 提高加工效率
3) 改善工件表面光洁度
通常的刀具涂层分为化学涂层(CVD)和化学涂层(PVD)两大类别。化学涂层主要用于涂覆碳化钛(TiC)、碳氮化钛(TiCN)、氮化钛(TiN)、三氧化二铝(Al2O3)、金刚石(Diamond)等,而物理涂层可涂的种类繁多,如氮化钛(TiN)、碳氮化钛(TiCN)、氮铝化钛(TiAlN)、二硼化钛(TiB2)、氮化锆(ZrN)、氮化铬(CrN),还有铝含量比氮铝化钛更高的氮钛化铝(AlTiN),用铬来代替钛的氮铬化铝(AlCrN)等等。另外还有一些如中温化学涂层(MT-CVD)的碳氮化钛(TiCN),一些等离子技术的化学涂等等。
近年来,相比化学涂层而言,物理涂层的发展很快,新的涂层品种层出不穷。但是在常规的钢铁加工中,三氧化二铝(Al2O3)涂层依然是绝对的主力。就目前的技术而言,要想取得耐热性能优越的Al2O3膜层,尤其是稳定的α相Al2O3,化学涂层还是最好的选择。目前各家刀具制造厂商都在致力于在保证涂层结合力的前提下努力增厚Al2O3膜层的厚度,改善涂层与基体结合力、改善多层涂层的层间结合力、改善表层涂层与工件的接触,甚至设法控制膜层的晶粒按事先选定的方向成长。2006年9月,我曾陪同《工具技术》主编辛节之先生和《机械工人(冷加工)》主编王天谌先生采访肯纳金属旗下金属加工解决方案和服务集团(Metalworking Solution & Server Group, MSSG)的副总裁伯纳德·诺斯(Bernard North)时,诺斯先生谈到肯纳金属的涂层厚度已经可以达到约30μm,而他们正式推向市场的经过升级的KC9110的涂层厚度达到了24μm。由于类似这种涂层技术的突破,客户应用KC9110这种牌号的平均切削速度由5年以前的约为250m/min提高到平均320m/min。
山高刀具则发表了他们研究和改善涂层晶核形成的成果。山高刀具认为,最优化的成核作用使得磨损性能显著提高,而且这些种类的α-Al2O3层通常由相对较小的、表现为无孔隙度的无缺陷颗粒组成。<1 0 1 4>结构的α-Al2O3层表现出最佳的耐磨性。山高新的α基Al2O3镀层DurAtomic"的制造水平达到原子级。结果使机械和热特性超过所有目前生产的Al2O3的能力。与传统生产的Al2O3相比,DurAtomic"镀层表现出更高的耐久性/韧性、杰出的耐热/耐磨性、化学惰性,并因此减少有关积屑瘤形成的倾向。山高的α基Al2O3镀层DurAtomic"似乎是抛弃了最外表层覆盖TiN膜层以方便识别磨损的定律,以让α-Al2O3镀层能够达到更厚的厚度。从山高提供的资料看,DurAtomic"的膜层确实也是具备很强竞争力的。
但是化学涂层由于涂层温度较高(约900~1000℃),基体与膜层间会出现一种脆性的η相,同时由于基体与膜层两者热膨胀系数不同而在高温下导致涂层中裂纹的产生。η相对涂层的结合力起着负面作用。微小的少量表面裂纹对刀具切削时是否具有负面作用虽然还没有确实的证据支持,但至少是涂层表面裂纹扩展的一个隐患。因此,德国豪泽涂层技术公司与瓦尔特合作开发了在较低的温度下用物理涂层的方法制备Al2O3膜层的技术。对于这种技术,其Al2O3膜层的金相组织、稳定性等情况我都还不得而知,但据瓦尔特(无锡)有限公司技术总监鄂有鹏先生介绍,该涂层在加工不锈钢和难加工材料方面的表现,还是可圈可点的。
据我所知,就改善涂层与刀具基体材料的结合力而言,涂前的处理非常重要。良好的表面处理不仅能改善涂层附着强度,使表面更光滑,还有助于减少积屑瘤的产生,微崩刃,降低切屑流动的危害。而我们国内有些刀具制造企业在涂层前不做认真、仔细的处理,这就降低了涂层与刀具之间的结合力,使涂层刀具原来应该有的优点不能完全发挥出来。